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Introduction

Mining method selection is one of the most
critical and problematic activities of mining
engineering. The ultimate goals of mining
method selection are to maximize company
profit, maximize recovery of the mineral
resources and provide a safe environment for
the miners by selecting the method with the
least problems among the feasible alternatives.
Selection of an appropriate mining method is a
complex task that requires consideration of
many technical, economic, political, social, and
historical factors. The appropriate mining
method is the method which is technically
feasible for the ore geometry and ground
conditions, while also being a low-cost
operation. This means that the best mining
method is the one which presents the cheapest
problem.

There is no single appropriate mining
method for a deposit. Usually two or more
feasible methods are possible. Each method
entails some inherent problems. Consequently,
the optimal method is one that offers the 

least problems. 
The approach of adopting the same mining

method as that of a neighbouring operation is
not always appropriate. However, this does not
mean that one cannot learn from comparing
mining plans of existing operations in the
district, or of similar deposits. 

Each orebody is unique, with its own
properties, and engineering judgement has a
great effect on the decision in such the
versatile job of mining. Therefore, it seems
clear that only an experienced engineer who
has improved his experience by working in
several mines and gaining skills in different
methods, can make a logical decision about
mining method selection. 

Although experience and engineering
judgement still provide major input into the
selection of a mining method, subtle
differences in the characteristics of each
deposit can usually be perceived only through
a detailed analysis of the available data. It
becomes the responsibility of the geologist and
engineer to work together to ensure that all
factors are considered in the mining method
selection process.

Characteristics that have a major impact on
the mining method selection include:

➤ Physical and mechanical characteristics
of the deposit such as ground conditions
of the ore zone, hangingwall, and
footwall, ore thickness, general shape,
dip, plunge, depth below the surface,
grade distribution, quality of resource,
etc. The basic components that define
the ground conditions are: rock material
shear strength, natural fractures and
discontinuities shear strength,
orientation, length, spacing and location
of major geologic structures, in situ
stress, hydrologic conditions, etc. 
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➤ Economic factors such as: capital cost, operating cost,
mineable ore tons, orebody grades and mineral value.

➤ Technical factors such as: mine recovery, flexibility of
methods, machinery and mining rate.

➤ Productivity factors such as annual productivity,
equipment, efficiency and environmental
considerations.

Each of these criteria can become the principal
determining factor in method selection, but the obvious
predominance of one consideration should not preclude
careful evaluation of all parameters.

In order to determine which mining method is feasible,
we need to compare the characteristics of the deposit with
those required for each mining method; the method(s) that
best match should be the one(s) considered technically
feasible, and should then be evaluated economically.

Several methodologies have been developed in the past to
evaluate suitable mining methods for an ore deposit, based
on the physical and mechanical characteristics of the deposit
such as shape, grade, and geomechanical properties of the
rock. A group of mine scientists such as Boshkov and Wright
(1973), Morrison (1976), Laubscher (1981) and Hartman
(1987), suggested a series of approaches for suitable mining
methods. These studies were neither enough nor complete, as
it is not possible to design a methodology that will
automatically choose a mining method for the orebody
studied. The uses of numerical systems to evaluate the
appropriateness of a mining method for a particular ore
deposit have been in use for some time.

In 1981 Nicholas suggested for the first time a numerical
approach for mining method selection. The Nicholas
methodology follows a numerical approach to rate different
mining methods based on the rankings of specific input
parameters. A numerical rating for each mining method is
arrived at by summing these rankings. The higher the rating,
the more suitable the mining method. One of the problems of
this approach was that all selection criteria had the same
relevance. A recent modification involves the weighting of
various categories, such as that of ore geometry, ore zone,
hangingwall, and footwall (Nicholas 1992).

The wrong definition of some scores and the small
domain between favourable and unfavourable scores
prompted Miller, Pakalnis and Paulin (1995) to investigate
the UBC approach. The UBC mining method selection is a
modification of the Nicolas approach, which places more
emphasis on stoping method, thus better representing typical
Canadian mining design practices. Unfortunately, in the UBC
approach, the importance of each selection criteria has not
been considered. In addition, neither of these methods takes
account of the uncertainty associated with boundary
conditions of the categories used to describe input variables.

Fuzzy set theory

Acquiring the information necessary for mining method
selection is an elaborate process, to say the least, and once
obtained, data is likely to be ambiguous. In addition, decision
makers must often apply rules of thumb or incorporate their
personal intuition and judgement when deriving performance
measures based on indefinite linguistic concepts, e.g. ‘high’,
‘low’, ‘strong’, ‘weak’, and ‘stable’. Such terminology is

common and is caused by imperfectly defined problem
attributes.

Fuzzy sets have vague boundaries and are therefore well
suited for representing linguistic terms such as ‘very’ or
‘somewhat’ or natural phenomena such as temperatures.
Fuzzy set theory is used to describe fuzzy sets, and was
developed as an alternative to ordinary (crisp) set theory.
Fuzzy logic is used to derive the set membership function for
a fuzzy set, which is used for fuzzy logic decision making.
The problem of constructing meaningful and suitable
membership functions involves a lot of additional research. A
number of empirical ways to establish membership functions
for fuzzy sets are known. 

Fuzzy multiple attribute decision making

Multiple attribute decision making deals with the problem of
choosing an alternative from a set of alternatives, which are
characterized in terms of various attributes. Usually multiple
attribute decision making involves the observance of a single
goal. Two distinct aspects need to be considered. The first is
the selection of an alternative on the basis of a set of scores
determined from the levels of attributes of each alternative.
The second is the classification of alternatives using a role
model defined on the basis of similar-case outcomes.
Multiple attribute decision making usually involves the use
of a framework that applies subjective criteria. Goals require
information about the preferences with respect to each
attribute measure, as well as trade-off preferences among
selected attributes. The assessment of these preferences is
either provided directly by the decision maker or determined
on the basis of past choices. 

Further, the decision maker might express or define a
ranking (weighting) for the criteria to reflect their
importance. There are many forms for expressing the relative
importance of criteria, but the most common are: utility
preference functions; the analytical hierarchy processes; and
fuzzy version of the classical linear weighted average.
Notability for any fuzzy decision criteria could be fuzzy or
crisp. The aim of multiple attribute decision making is to
derive the best alternative as the one that shows the highest
degree of satisfaction for all pre-elected attributes and
predefined goals. In order to obtain the best alternative, a
ranking process is required. If the rating for alternative Ak is
crisp, there is no problem and the best alternative is the one
with the highest support. When the rating is itself a fuzzy
set, a more sophisticated ranking procedure is required.

The focus of this paper is on Yager’s method, which is
general enough to deal with both multiple objectives and
multiple attribute problems. The Yager method (Yager, 1978)
follows the max-min method of Bellman and Zadeh (1970),
with the improvement of Saaty’s method, which considers
the use of a reciprocal matrix to express the pair-wise
comparison criteria and the resulting eigenvector as
subjective weights. The weighting procedure uses
exponentials based on the definition of linguistic hedges,
proposed by Zadeh (1973).

On describing multiple attribute decision making
problems, only a single objective is considered, namely the
selection of the best alternative from a set of alternatives.
The decision method assumes the max-min principle
approach. Formally, let A = {A1, A2,..., An} be the set of
alternatives, C = {C1, C2,..., Cm} be the set of criteria, which
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can be given as fuzzy sets in the space of alternatives. Hence,
the fuzzy set decision is the intersection of all criteria: µD (A)
= Min{µC1(Ai), µC2(Ai),...,µCm (Ai)}. For all (Ai) ∈ A, and the
optimal decision is yielded by, µD (A*) = Max (µD,(Ai)), where
A* is the optimal decision. 

A main difference in this approach is that the importance
of criteria is represented as exponential scalars. This is based
on the idea of linguistic hedges. The rationale behind using
weights (or importance levels) as exponents is that the
higher the importance of criteria, the larger should be the
exponent, giving the minimum rule. Conversely, the less
important a criterion, is the smaller its weight. This seems
intuitive. Formally:

[1]

Consider the problem of selecting an alternative from a
set of alternatives {A1, A2, A3} for which the set of criteria C1,
C2, and C3 is defined. The judgement scale used is as follows:
1 means equally important, 3 means weakly more important,
5 means strongly more important, 7 means demonstrably
more important, and 9 means absolutely more important. The
values between 2, 4, 6, and 8 indicate some compromised
judgment (Saaty, 1990). Yager (1978) suggests the use of
Saaty’s method for pair-wise comparison of the criteria
(attributes). A pair-wise comparison of criteria (attributes)
could improve and facilitate the assessment of criteria
importance. Saaty developed a procedure for obtaining a ratio
scale for the elements compared. To obtain the importance,
the decision maker is asked to judge the criteria in pair-wise
comparisons and the values assigned are  Wij = 1/Wij . Having
obtained the judgements, an m x m matrix B is constructed
so that bii = 1, and bij = wij and bji = 1/bij . 

Yager(1978) suggests that, with respect to a decision
problem, the use of the resulting eigenvector expresses a
decision maker’s empirical estimate of the level of importance
of alternatives for a given criterion (Basetin and Kesimal,
1999).

If C2 and C3 are three and two times as important as C1,
respectively, and C2 is  three times as important as C3, the
pair-wise comparison reciprocal matrix will be expressed as:

Hence, the eigenvalues of the reciprocal matrix are λ = [0
3.053 0] and, therefore, λmax = 3.054. The relative weights of
the criteria are finally achieved in the eigenvector of the
matrix, i.e. eigenvector = {0.157, 0.594, 0.249}, with λmax.
The eigenvector reflects the weights associated with each
attribute, feature and goal of a decision problem. Thus the
exponential weightings are α1 = 0.157, α2 = 0.594, α3 =
0.249; the final decision expressed in a membership decision
function, can be determined as follows: µD(A) = Min
{µC1

0.157, µC2
0.594, µC3

0.249}.
If the relative levels of importance of criteria for

alternative A1 are 0.75, 0.4 and 0.7, respectively, those for

alternative A2 are 0.8, 0.95 and 0.73, respectively, and those
for alternative A3 are 0.54, 0.32 and 0.4 respectively, then
the applicable membership decision functions of alternatives
A1, A2 and A3, respectively, can be defined as follows:

µD(A1) = min {(0.75)0.157, (0.4)0.594, (0.7)0.249} = 0.58
µD(A2) = min {(0.8)0.157, (0.95)0.594, (0.73)0.249} = 0.92
µD(A3) = min {(0.54)0.157, (0.32)0.594, (0.4)0.249} = 0.51

Consequently, the optimal solution, corresponding to the
maximum membership level of 0.92, is given as 

Fuzzy dominance method

Hiple (1982) has proposed a flexible comparison technique
known as the dominance matrix concept. Usually a
dominance matrix is constructed for a typical element, dij , of
the dominance matrix D, where dij is the number of the
factor for which the value of alternative i dominates i.e. is
greater than alternative j. A typical element dij of the
dominance matrix is explicitly defined as follows:

[2]

Because the entries in the rating matrix are calculated
using information which is often fuzzy or imprecise, a
threshold level value can be chosen to represent the
minimum amount by which one alternative must be greater
than the other, for a given factor. In order for an alternative
to be considered dominant for the factor the dimensionality
of D is equal to the number of alternatives under
consideration and dashes are entered for the diagonal
elements since these elements have no meaning in the
discrimination process (Hiple,1982 and 1983). 

In the dominance matrix, the sum of the kth row
indicates the number of times the kth alternative dominates
all other alternatives. The sum of kth column represents the
number of times the kth alternative is dominated by the
others. Hence, the more preferable alternatives possess
relatively high row sums and low column totals. These two
attributes can be combined into a single measure by
subtracting the column sum from the row sum for each
alternative. The preferable alternative will have the highest
difference. 

Case study 

The selection of a mining method has been considered for
extracting the anomaly 3 at the Gol-Gohar iron mine. The
Gol-Gohar iron mine is located 60 kilometres southwest of
Sirjan city of Kerman province in Iran between 29° 3'' and
29° 7'' latitude and between 55° 15'' and 55° 24'' longitude.
Kerman province is located in the southeast part of Iran. The
Gol-Gohar iron mine contained six anomalies, Figure 1.
Anomaly No. 3 is the biggest anomaly at this mine. On the
basis of exploration work, the total ore reserves of anomaly
No.3 are calculated as 616 million tons, with an average
grade of 54.3 per cent Fe. Table I shows physical and
mechanical characteristics of this deposit. Subsidence in this
region is not prevalent and the mineral occurrence is
uniform.
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In view of the technical parameters of anomaly No.3 of
the Gol-Gohar mine (Table I), some mining methods are
inappropriate. For example, the room and pillar and longwall
methods, often used for low dip layers, or the shrinkage
method often used for thicknesses greater than 30 m, cannot
be used. The mining methods that were considered for
extraction of this anomaly were as follows: cut and fill (CF),
open pit (OP), square set (SQ), sublevel stoping (SLS),
sublevel caving (SLC), top slicing (TC), and block caving

(BC). The criteria that impact on the mining method selection,
which were considered in this study, are summarized in
Table II.

Fuzzy multiple attribute decision making

Let A = {CF, OP, SQ, SLC, SLS, Ts, Bc} be the set of possible
mining alternatives and C = {C1, C2, ... , C15} the set of
selection criteria. A decision maker is asked to define the
membership levels of each criterion after conferring with
experts on this subject. Table III shows the membership
levels of each criterion.

A 15 x 15 pair-wise comparison matrix (Figure 2) was
constructed to express the decision makers’ empirical
estimate of the level of importance for each individual
criterion. The maximum eigenvector was obtained from this
matrix, using Matlab (version 6.0) software. 

The respective weights of criteria were finally obtained
from the eigenvector of the matrix i.e. eigenvector = {0.1410,
0.1410, 0.1410, 0.1410, 0.0673, 0.0365, 0.0117, 0.0673,
0.0365, 0.0117, 0.0239, 0.0165, 0.0117}. The eigenvector
corresponds to the weights to be associated with the
memberships of each criterion. The exponential weighting
was consequently defined from each criterion as: α1 =
0.1410, α2 = 0.1410, α3 = 0.1410, α4 = 0.1410, α5 = 0.0673,
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Table I

Technical parameters of anomaly No. 3 at Gol-
Gohar mine (Ataei, 1998)

Parameter Quality

Thickness 50–60 m
Dip 19–25 degree
Type Massive
Grade distribution Gradational
Depth 90–700 m
Rock substance strength of ore 7.7
Rock substance strength of hangingwall 8.4
Rock substance strength of footwall 12.8
RQD for walls and ore 25–35%
RMR for walls and ore 20–40

Table II

Criteria for mining method selection

Criterion Operation

C1 Thickness
C2 Dip
C3 Shape
C4 Rock substance strength of ore
C5 Rock substance strength of hangingwall
C6 Rock substance strength of footwall
C7 RMR of ore
C8 RMR of hangingwall
C9 RMR of footwall
C10 Depth
C11 Grade distribution
C12 Subsidence
C13 Technology
C14 Recovery
C15 Ore uniformity

Table III

Membership level of each criterion

CF OP SQ SLC SLS TS BC

C1 0.1247 0.1395 0.0424 0.2130 0.2130 0.0941 0.1421

C2 0.1908 0.1908 0.1908 0.0530 0.0530 0.1162 0.0872

C3 0.0515 0.2402 0.0334 0.1526 0.1526 0.0515 0.2402

C4 0.1511 0.1511 0.0389 0.0755 0.2784 0.0389 0.0755

C5 0.1232 0.1232 0.0317 0.1232 0.2275 0.0317 0.0317

C6 0.2016 0.2016 0.0355 0.0521 0.2016 0.0521 0.0521

C7 0.1766 0.1766 0.0933 0.0933 0.0467 0.0933 0.1766

C8 0.0243 0.0796 0.1404 0.1404 0.0796 0.0429 0.0796

C9 0.2188 0.0929 0.0983 0.1450 0.0186 0.0186 0.0929

C10 0.1952 0.0669 0.0631 0.1903 0.0676 0.0676 0.1952

C11 0.2588 0.0117 0.0771 0.0771 0.0771 0.5040 0.1572

C12 0.1428 0.2410 0.2410 0.0238 0.0785 0.0238 0.0238

C13 0.1337 0.2431 0.1337 0.0366 0.0711 0.0215 0.0215

C14 0.1298 0.0649 0.2528 0.0649 0.0649 0.1298 0.1298

C15 0.1518 0.0467 0.1405 0.1357 0.1357 0.1357 0.1357

Figure 1—Six anomalies of Gol-Gohar mine

Figure 2—Criterion comparisons



α6 = 0.0365, α7 = 0.0117, α8 = 0.0673, α9 = 0.0365, α10 =
0.0117, α11 = 0.1410, α12 = 0.0117, α13 = 0.0239, α14 =
0.0165, α15 = 0.0117. Comparison of the criteria weighting is
shown in Figure 3. The membership decision function
according to Yager (1978) was determined for each
alternative.

Using the max-min Bellman and Zadeh principle, the
final set is determined as below

yielding the result:

Which selects that block-caving method as preferable.

Fuzzy dominance method 

In the fuzzy multiple attribute decision making section, fuzzy
sets for each method (alternative) and their factors have been
suggested. To use the dominance method and select an
appropriate mining method for this anomaly, we need to use
the data in Table IV. This matrix has 15 rows (effective
criterions) and 7 columns (alternatives). In this matrix,
weight of each criteria acts potentially. 

Following the procedure illustrated in the previous
section, a dominance matrix can be created for the factors in
Table IV. For this purpose, a 7x7 matrix is created by first
associating each method with a corresponding row and
column of the matrix: the cut and fill method corresponds 
to row 1 and column 1, open pit method to row and 
column 2, etc.

The element d12 of the dominance matrix is the number
of performance factors for which cut and fill is greater than
the open pit mining method. When the set of paired ratings
{(0.75,0.76), (0.79,79), (0.66,0.82), (0.77,0.77),
(0.77,0.87), (0.94,0.94), (0.95,0.98), (0.78,0.84),
(0.95,0.92), (0.98,0.97), (0.83,0.54), (0.98,0.98),
(0.95,0.97), (0.97, 0.96), (0.98,0.96)} is examined, it can be
seen that cut and fill has a higher rating than open pit for
five of the factors. Consequently, the value of d12 is 5.
Similarly d21 possesses a magnitude of 6. The complete
dominance matrix is displayed in Table V. In this table, in the
last row and column, cumulative values for each row and
column have been calculated.

In Table V the difference between column and row sums
are 8,12,-11,11,-2,-30 and 12 for CF, OP, SQ, SLC, SLS, TS
and BC, respectively. For this anomaly, clearly the alternative
OP (open pit method) and BC (Block caving) are the most
desirable alternatives for the given rating matrix. Therefore,
this approach suggests the open pit mining and block caving
method for anomaly No. 3 of Gol-Gohar anomalies.

Conclusion

Mining method selection is the fundamental decision made in
a mine project, and a proper choice is critical as it affects
almost all other major decisions. The selection of a suitable
mining method for an ore deposit involves consideration of a
diverse set of criteria. Several methods such as Nicolas,
modified Nicolas and the UBC method have been developed
in the past to evaluate suitable mining methods for an ore
deposit. Unfortunately neither of these methods takes
account of weighting factors for each criterion that impacts
on mining method selection. This paper has discussed
decision making in a fuzzy environment, i.e. uncertain data-
linguistic variable for solving multiple attribute problems of
mining method selection. The most important approaches
and basic concepts were discussed. This paper presented a
new approach for assigning criteria weighting. 
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Table IV

Membership decision function of each criterion by
the Yager method

CF OP SQ SLC SLS TS BC

C1 0.75 0.76 0.64 0.80 0.80 0.72 0.76
C2 0.79 0.79 0.79 0.66 0.66 0.74 0.98
C3 0.66 0.82 0.62 0.77 0.77 0.66 0.82
C4 0.77 0.77 0.63 0.70 0.84 0.63 0.70
C5 0.77 0.87 0.80 0.87 0.90 0.80 0.80
C6 0.94 0.94 0.89 0.90 0.94 0.90 0.90
C7 0.95 0.98 0.97 0.97 0.96 0.97 0.98
C8 0.78 0.84 0.88 0.88 0.84 0.81 0.84
C9 0.95 0.92 0.92 0.93 0.86 0.86 0.92
C10 0.98 0.97 0.97 0.98 0.97 0.97 0.98
C11 0.83 0.54 0.70 0.70 0.70 0.91 0.77
C12 0.98 0.98 0.98 0.96 0.97 0.96 0.96
C13 0.95 0.97 0.95 0.98 0.94 0.91 0.91
C14 0.97 0.96 0.98 0.96 0.96 0.97 0.97
C15 0.98 0.96 0.98 0.98 0.98 0.98 0.98

Table V

Dominance matrix, mining method selection

CF OP SQ SLC SLS TS BC SUM

CF * 5 7 7 7 8 6 40
OP 6 * 7 6 6 11 5 41
SQ 4 4 * 3 7 6 4 28
SLC 6 7 8 * 5 8 5 39
SLS 6 5 5 4 * 8 6 34
TS 4 3 4 3 4 * 1 19
BC 6 5 8 5 7 8 * 39
SUM 32 29 39 28 36 49 27 *

Figure 3—Comparison of criterions
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For mining method selection in anomaly No. 3 of the Gol-
Gohar iron mine, two methods of fuzzy decision making
tools (fuzzy dominance and fuzzy multiple attribute decision
making methods) were used. Weights for all alternatives
were calculated. Results have showed that the block caving
method would be preferable using fuzzy multiple attribute
decision making, but open pit mining and block caving
method would be preferable by the fuzzy dominance method.
The fuzzy dominance method considers method selection
criteria but the fuzzy multiple attribute decision making
method considers method selection criteria and their
weightings. Therefore, selection results derived from fuzzy
multiple attribute decision making methods are
comparatively more significant than those obtained using
fuzzy dominance methods. Therefore, on the basis of the
results presented, the most suitable mining method for
extracting the mineralized anomaly at No. 3 Gol-Gohar iron
mine is the block caving method.
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